Computer Networks and Internets with
Internet Applications, 4e

By Douglas E. Comer

Lecture PowerPoints

By Lami Kaya, LKaya@ieee.org

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Chapter 3

Network Programming
and
Applications

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Topics Covered

3.1 Introduction

3.2 Network Communication

3.3 Client-Server Computing

3.4 Communication Paradigm

3.5 An Example Application Program Interface
3.6 An Intuitive Look At The API

3.7 Definition Of The API
— 3.7.1 The Await_Contact Function
— 3.7.2 The Make_Contact Function
— 3.7.3 The Appname_To_Appnum Function
— 3.7.4 The Cname_To_Comp Function
— 3.7.5 The Send Function
— 3.7.6 The Recv And Recvin Functions
— 3.7.7 The Send_Eof Function
— 3.7.8 Summary Of API Types

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Topics Covered (cont)

3.8 Code For An Echo Application

— 3.8.1 Example Echo Server Code
— 3.8.2 Example Echo Client Code

3.9 Code For A Chat Application
— 3.9.1 Example Chat Server Code
— 3.9.2 Example Chat Client Code

3.10 Code For A Web Application
— 3.10.1 Example Web Client Code
— 3.10.2 Example Web Server Code

3.11 Managing Multiple Connections With The Select
Function

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

3.1 Introduction

This chapter

describes NW from a programmer's point of view
outlines the NW facilities available to a programmer
examines example applications that use a NW
introduces a small set of library functions

shows how the library functions can be used

This chapter will demonstrate an important idea:
* A programmer can create Internet applications

— without understanding the underlying NW technology or
communication protocols

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

3.2 Network Communication

When applications use a NW, they do so in pairs
— The pair uses the NW merely to exchange messages

Ex: imagine a distributed database service that allows remote users
to access a central database

Such a service requires two applications,
— one running on the computer that has the database
— and the other running on a remote computer

The application on the remote computer sends a request to the
application running on the database computer

— When the request arrives, the application running on the database
computer consults the database and returns a response

Only the two applications understand the message format and
meaning

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

3.3 Client-Server Computing (1)

One application starts first and waits for the other
application to contact it

The second application must know the location where
the first application is waiting

The arrangement in which a NW application waits for
contact from another application is known as the
— client-server paradigm or client-server computing

The program that waits for contact is called a server

The program that initiates contact is known as a client

— To initiate contact, a client must know where the server is
running, and must specify the location

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

3.3 Client-Server Computing (2)

How does a client specify the location of a server?
* In the Internet, a location is given by a pair of identifiers
— (computer, application)
« computer identifies the computer on which the server is running
« application identifies a particular application program on that computer

« Application SW represents the two values as binary numbers
« Humans never need to deal with the binary representation directly
— Instead, the values are also given alphabetic names

« Humans enter the names, and software translates each name to a
corresponding binary value automatically

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

3.4 Communication Paradigm

« Two applications

establish communication,
exchange messages back and forth,
and then terminate

* The steps (in details) are:

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

The server starts first, and waits for contact from a client

The client specifies the server's location and requests a
connection be established

Once a connection is in place, the client and server use the
connection to exchange messages

After they finish sending data, the client and server each send an
end-of-file (EOF) and the connection is terminated

3.5 An Example Application Program
Interface

« Application Program Interface (API) is used to describe
the set of operations available to a programmer

« The API specifies the arguments for each operation as
well as the semantics

« Figure 3.1 lists the seven functions that an application
can call

— Functions send and recv are supplied directly by the OS
— Other functions in the API consist of routines that are written
— These seven functions are sufficient for most NW applications

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 10

Operation Meaning

await_contact used by a server to wait for contact from a client
make_contact used by a client to contact a server
cname_to_comp used to translate a computer name to an

equivalent internal binary value
appname_to_appnum used to translate a program name to an
equivalent internal binary value

send used by either client or server to send data
recv used by either client or server to receive data
send_eof used by both client and server after they have

finished sending data

Figure 3.1 An example API consisting of seven operations. These seven
functions are sufficient for most network applicationst,

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 11

3.6 An Intuitive Look At The API

A server begins by calling await_contact to wait for contact from a
client

The client begins by calling make_contact to establish contact
Once the client has contacted the server

— the two can exchange messages with send and recv
The two applications must be programmed

— to know whether to send or receive

— if both sides try to receive without sending, they will block forever

After it finishes sending data, an application calls send_eof to
send the EOF

On the other side, recv returns a value of zero to indicate that the
EOF has been reached

Figure 3.2 illustrates the sequence of API calls that the client and
server make for such an interaction

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 12

Server Client

awail _conlact make conlact
' l
recv send
' '
send sendeof
' l
sendeof recv

Figure 3.2 Nustration of the API calls uvsed for a trivial interaction. The
client sends one request and receives one reply.

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 13

3.7 Definition Of The API

« To keep our API independent of particular OS and NW
software
— we can define three data types and use

« Figure 3.3 lists the type names and their meanings
— Using the three types, we can precisely define the example API

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 14

Type Name Meaning

appnum A binary value used to identify an application

computer A binary value used to identify a computer

connection A value used to identify the connection
between a client and server

Figure 3.3 The three type names used in our example APL On a given com-
puter these types are defined to be integers of a specific size.

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 15

Await_Contact Function

* A server calls function await_contact to wait for
contact from a client

connection await_contact(appnum a)

« The call takes one argument of type appnum and
returns a value of type connection

— The argument specifies a number that identifies the server
application

— a client must specify the same number when contacting the
server

« The server uses the return value (type connection) to
transfer data

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 16

Make Contact Function

« A client calls function make_contact to establish
contact with a server

connection make_contact (computer c, appnum a)

* The call takes two arguments

— identify a computer on which the server is running
— and the application number that the server

* The client uses the return value
— which is of type connection to transfer data

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

17

Appname_To Appnum Function

* Clients and servers both use appname_to_appnum

— to translate from a human-readable name for a service to an
internal binary value

* The service names are standardized throughout the
Internet

appnum appname_to_appnum(char *a)

* The call takes one argument and returns an equivalent
binary value of type appnum

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

18

Cname To Comp Function

* Clients call cname_to _comp

— to convert from a human-readable computer name to the internal
binary value

computer cname_to_comp (char *c)

* The call takes one argument and returns an equivalent
binary value of type computer

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 19

Send Function

 Both clients and servers use send to transfer data across
the network

int send (connection con, char *buffer, int length, int flags)

« The call takes four arguments.

— The first argument specifies a connection previously established with
await_contact or make_ contact

— the second is the address of a buffer containing data to send
— the third argument gives the length of the data in bytes (octets)
— and the fourth argument is zero for normal transfer

« Send returns the number of bytes transferred, or a negative
value if an error occurred

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 20

Recv And Recvin Functions

Both clients and servers use recv to access data that arrives
int recv (connection con, char *buffer, int length, int flags)

The call takes four arguments
— The first specifies a connection with await_contact or make_contact
— the second is the address of a buffer into which the data to be placed
— the third gives the size of the buffer in bytes
— and the fourth is zero for normal transfer
recv returns the number of bytes that were placed in the buffer
— zero to indicate that EOF has been reached
— or a negative value to indicate that an error occurred

We can also use a library function recvin that repeatedly calls
recv until an entire line of text has been received.

int recvin (connection con, char *buffer, int length)

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 21

Send Eof Function

Both the client and server must use send_eof after
sending data
— to inform the other side that no further transmission will occur

On the other side, the recv function returns zero when
it receives the EOF

int send_eof(connection con)

Argument specifies a connection previously established
with await_contact or make_ contact

The function returns a negative value

— to indicate that an error occurred, and a non-negative value
otherwise

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 22

Function Type Type of Typeof Type of
Name Returned arg 1 arg 2 args 3&4

await_contact connection appnum
make_contact connection computer appnum
appname_to_appnum appnum char”
cname_to comp computer char*
send int connection char* int
recv int connection char* int
recvin int connection char* int
send eof int connection

Figure 34 A summary of argument and return types for the example APL

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

23

3.8 Code For An Echo Application (1)

The client repeatedly
— prompts the user for a line of input,
— sends the line to the server,
— and then displays whatever the server sends back.

Like all the applications described in this chapter,
— the echo application operates across a NW

— That is, the client and server programs can run on separate
computers

Figure 3.5 illustrates connection to the Internet

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

24

- client runy here server runs here .

el | "
L) 7 < > Y) J
(_ { Internet ; _}
A)_) A Py

Figure 3.5 lllustration of the echo application, which can be used on any two
computers connected to the Internet. The client program runs on
one computer and the server program runs on another,

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 25

3.8 Code For An Echo Application (2)

EX: suppose someone using computer
lancelot.cs.purdue.edu chooses 20000 as the
application number

The server is invoked by the command:
echoserver 20000

If some other application is using number 20000,
— the server emits an appropriate error message and exits
— the user must choose another number.

Once the server has been invoked, the client is invoked:
echoclient lancelot.cs.purdue.edu 20000

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 26

3.9 Code For A Chat Application

A simplified version of chat that works between a single
pair of users

One user begins by choosing an application number and
running the server

EX: suppose a user on excalibur.cs.purdue.edu runs
the server:

chatserver 25000
A user on another computer can invoke the client:
chatclient excalibur.cs.purdue.edu 25000

To keep the code as small as possible
— the scheme requires users to take turns entering text
— Users alternate entering text until one of them sends an EOF

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 27

3.10 Code For A Web Application (1)

To run the server, a user chooses an application number and
Invokes the server

Ex: if a user on computer netbook.cs.purdue.edu chooses
application number 27000, the server can be invoked with the
command:

webserver 27000

The client specifies a computer, a path name, and an application
number:

webclient netbook.cs.purdue.edu /index.html 27000

It is possible to use a conventional Web browser (such as, Internet
Explorer or Netscape) to access the server

http://netbook.cs.purdue.edu:27000/index.html

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 28

3.10 Code For A Web Application (2)

The client code is extremely simple:

— after establishing communication with the Web server, it sends a
request, which must have the form :

GET / path HTTP/1.0 CRLF CRLF
CRLF GET

— where path denotes the name of an item such as index.html ,
— CRLF denotes the two characters carriage return and line feed.

After sending the request, the client receives and prints
output from the server

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 29

3.10 Code For A Web Application (3)

Web server may seem more complex than previous examples,
— complexity results from Web details rather than networking details

In addition to reading and parsing a request
— the server must send both a "“header" and data in the response
— The header consists of several lines of text that are terminated by CRLF

The header lines are of the form:
HTTP/1.0 status status_string CRLF
Server: CNAI Demo Server CRLF
Content-Length: datasize CRLF
Content-Type: text/html CRLF
CRLF
where datasize denotes the size of the data that follows

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 30

3.10 Code For A Web Application (4)

The code is also complicated by error handling

— error messages must be sent in a form that a browser can
understand

If a request is incorrectly formed, our server generates a
400 error message

If the item specified in the request cannot be found
404 error message

The Web server differs from the previous examples in a
significant way:

— the server program does not exit after satisfying one request

— Instead, it remains running, ready for additional requests

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 31

3.11 Managing Multiple Connections
With The Select Function (1)

* Although our example API supports 1-to-1 interaction
between a client and server,

— the API does not support 1-to-many interaction

« To see why, consider multiple connections

— To create such connections
 a single application must call make_contact multiple times
» specifying a computer and appnum for each call

« Once the connections have been established

— the application cannot know which of them will receive a
message first

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

32

3.11 Managing Multiple Connections
With The Select Function (2)

« Many OS include a function named select that solves the
problem of managing multiple connections
— The select call checks a set of connections

— The call blocks until at least one of the specified connections has
received data

— The call then returns a value that tells which of the connections
have received data

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 33

3.11 Managing Multiple Connections
With The Select Function (3)

* Ex: consider an application that must receive requests and send
responses over two connections

— Such an application can have the following general form:

Call make contact to form connection1;
Call make contact to form connection2;

Repeat forever {

Call select to determine which connection is ready

If (connection1 is ready) {
Call recv to read request from connection1;
Compute response to request;
Call send to send response over connection1;

} if (connection2 is ready) {
Call recv to read request from connection2;
Compute response to request;
Call send to send response over connection2; } }

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

34

