
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 1

Computer Networks and Internets with
Internet Applications, 4e

By Douglas E. Comer

Lecture PowerPoints

By Lami Kaya, LKaya@ieee.org

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 2

Chapter 3

Network Programming
and

Applications

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 3

Topics Covered
• 3.1 Introduction
• 3.2 Network Communication
• 3.3 Client-Server Computing
• 3.4 Communication Paradigm
• 3.5 An Example Application Program Interface
• 3.6 An Intuitive Look At The API
• 3.7 Definition Of The API

– 3.7.1 The Await_Contact Function
– 3.7.2 The Make_Contact Function
– 3.7.3 The Appname_To_Appnum Function
– 3.7.4 The Cname_To_Comp Function
– 3.7.5 The Send Function
– 3.7.6 The Recv And Recvln Functions
– 3.7.7 The Send_Eof Function
– 3.7.8 Summary Of API Types

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 4

Topics Covered (cont)

• 3.8 Code For An Echo Application
– 3.8.1 Example Echo Server Code
– 3.8.2 Example Echo Client Code

• 3.9 Code For A Chat Application
– 3.9.1 Example Chat Server Code
– 3.9.2 Example Chat Client Code

• 3.10 Code For A Web Application
– 3.10.1 Example Web Client Code
– 3.10.2 Example Web Server Code

• 3.11 Managing Multiple Connections With The Select
Function

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 5

3.1 Introduction

This chapter
• describes NW from a programmer's point of view
• outlines the NW facilities available to a programmer
• examines example applications that use a NW
• introduces a small set of library functions
• shows how the library functions can be used

This chapter will demonstrate an important idea:
• A programmer can create Internet applications

– without understanding the underlying NW technology or
communication protocols

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 6

3.2 Network Communication

• When applications use a NW, they do so in pairs
– The pair uses the NW merely to exchange messages

• Ex: imagine a distributed database service that allows remote users
to access a central database

• Such a service requires two applications,
– one running on the computer that has the database
– and the other running on a remote computer

• The application on the remote computer sends a request to the
application running on the database computer
– When the request arrives, the application running on the database

computer consults the database and returns a response
• Only the two applications understand the message format and

meaning

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 7

3.3 Client-Server Computing (1)

• One application starts first and waits for the other
application to contact it

• The second application must know the location where
the first application is waiting

• The arrangement in which a NW application waits for
contact from another application is known as the
– client-server paradigm or client-server computing

• The program that waits for contact is called a server
• The program that initiates contact is known as a client

– To initiate contact, a client must know where the server is
running, and must specify the location

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 8

3.3 Client-Server Computing (2)

How does a client specify the location of a server?
• In the Internet, a location is given by a pair of identifiers

– (computer, application)
• computer identifies the computer on which the server is running
• application identifies a particular application program on that computer

• Application SW represents the two values as binary numbers
• Humans never need to deal with the binary representation directly

– Instead, the values are also given alphabetic names
• Humans enter the names, and software translates each name to a

corresponding binary value automatically

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 9

3.4 Communication Paradigm

• Two applications
– establish communication,
– exchange messages back and forth,
– and then terminate

• The steps (in details) are:
– The server starts first, and waits for contact from a client
– The client specifies the server's location and requests a

connection be established
– Once a connection is in place, the client and server use the

connection to exchange messages
– After they finish sending data, the client and server each send an

end-of-file (EOF) and the connection is terminated

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 10

3.5 An Example Application Program
Interface

• Application Program Interface (API) is used to describe
the set of operations available to a programmer

• The API specifies the arguments for each operation as
well as the semantics

• Figure 3.1 lists the seven functions that an application
can call
– Functions send and recv are supplied directly by the OS
– Other functions in the API consist of routines that are written
– These seven functions are sufficient for most NW applications

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 11

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 12

3.6 An Intuitive Look At The API

• A server begins by calling await_contact to wait for contact from a
client

• The client begins by calling make_contact to establish contact
• Once the client has contacted the server

– the two can exchange messages with send and recv
• The two applications must be programmed

– to know whether to send or receive
– if both sides try to receive without sending, they will block forever

• After it finishes sending data, an application calls send_eof to
send the EOF

• On the other side, recv returns a value of zero to indicate that the
EOF has been reached

• Figure 3.2 illustrates the sequence of API calls that the client and
server make for such an interaction

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 13

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 14

3.7 Definition Of The API

• To keep our API independent of particular OS and NW
software
– we can define three data types and use

• Figure 3.3 lists the type names and their meanings
– Using the three types, we can precisely define the example API

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 15

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 16

Await_Contact Function

• A server calls function await_contact to wait for
contact from a client

connection await_contact(appnum a)
• The call takes one argument of type appnum and

returns a value of type connection
– The argument specifies a number that identifies the server

application
– a client must specify the same number when contacting the

server

• The server uses the return value (type connection) to
transfer data

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 17

Make_Contact Function

• A client calls function make_contact to establish
contact with a server

 connection make_contact (computer c, appnum a)
• The call takes two arguments

– identify a computer on which the server is running
– and the application number that the server

• The client uses the return value
– which is of type connection to transfer data

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 18

Appname_To_Appnum Function

• Clients and servers both use appname_to_appnum
– to translate from a human-readable name for a service to an

internal binary value

• The service names are standardized throughout the
Internet

appnum appname_to_appnum(char *a)
• The call takes one argument and returns an equivalent

binary value of type appnum

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 19

Cname_To_Comp Function

• Clients call cname_to_comp
– to convert from a human-readable computer name to the internal

binary value

computer cname_to_comp (char *c)

• The call takes one argument and returns an equivalent
binary value of type computer

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 20

Send Function

• Both clients and servers use send to transfer data across
the network

int send (connection con, char *buffer, int length, int flags)
• The call takes four arguments.

– The first argument specifies a connection previously established with
await_contact or make_contact

– the second is the address of a buffer containing data to send
– the third argument gives the length of the data in bytes (octets)
– and the fourth argument is zero for normal transfer

• Send returns the number of bytes transferred, or a negative
value if an error occurred

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 21

Recv And Recvln Functions

• Both clients and servers use recv to access data that arrives
 int recv (connection con, char *buffer, int length, int flags)

• The call takes four arguments
– The first specifies a connection with await_contact or make_contact
– the second is the address of a buffer into which the data to be placed
– the third gives the size of the buffer in bytes
– and the fourth is zero for normal transfer

• recv returns the number of bytes that were placed in the buffer
– zero to indicate that EOF has been reached
– or a negative value to indicate that an error occurred

• We can also use a library function recvln that repeatedly calls
recv until an entire line of text has been received.

int recvln (connection con, char *buffer, int length)

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 22

Send_Eof Function

• Both the client and server must use send_eof after
sending data
– to inform the other side that no further transmission will occur

• On the other side, the recv function returns zero when
it receives the EOF

int send_eof(connection con)
• Argument specifies a connection previously established

with await_contact or make_contact
• The function returns a negative value

– to indicate that an error occurred, and a non-negative value
otherwise

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 23

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 24

3.8 Code For An Echo Application (1)

• The client repeatedly
– prompts the user for a line of input,
– sends the line to the server,
– and then displays whatever the server sends back.

• Like all the applications described in this chapter,
– the echo application operates across a NW
– That is, the client and server programs can run on separate

computers

• Figure 3.5 illustrates connection to the Internet

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 25

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 26

3.8 Code For An Echo Application (2)

• Ex: suppose someone using computer
lancelot.cs.purdue.edu chooses 20000 as the
application number

• The server is invoked by the command:
echoserver 20000

• If some other application is using number 20000,
– the server emits an appropriate error message and exits
– the user must choose another number.

• Once the server has been invoked, the client is invoked:
echoclient lancelot.cs.purdue.edu 20000

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 27

3.9 Code For A Chat Application

• A simplified version of chat that works between a single
pair of users

• One user begins by choosing an application number and
running the server

• Ex: suppose a user on excalibur.cs.purdue.edu runs
the server:

chatserver 25000
• A user on another computer can invoke the client:

chatclient excalibur.cs.purdue.edu 25000
• To keep the code as small as possible

– the scheme requires users to take turns entering text
– Users alternate entering text until one of them sends an EOF

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 28

3.10 Code For A Web Application (1)

• To run the server, a user chooses an application number and
invokes the server

• Ex: if a user on computer netbook.cs.purdue.edu chooses
application number 27000, the server can be invoked with the
command:

webserver 27000
• The client specifies a computer, a path name, and an application

number:
webclient netbook.cs.purdue.edu /index.html 27000

• It is possible to use a conventional Web browser (such as, Internet
Explorer or Netscape) to access the server

http://netbook.cs.purdue.edu:27000/index.html

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 29

3.10 Code For A Web Application (2)

• The client code is extremely simple:
– after establishing communication with the Web server, it sends a

request, which must have the form :

GET / path HTTP/1.0 CRLF CRLF
CRLF GET

– where path denotes the name of an item such as index.html ,
– CRLF denotes the two characters carriage return and line feed.

• After sending the request, the client receives and prints
output from the server

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 30

3.10 Code For A Web Application (3)

• Web server may seem more complex than previous examples,
– complexity results from Web details rather than networking details

• In addition to reading and parsing a request
– the server must send both a ``header'' and data in the response
– The header consists of several lines of text that are terminated by CRLF

• The header lines are of the form:
HTTP/1.0 status status_string CRLF
Server: CNAI Demo Server CRLF
Content-Length: datasize CRLF
Content-Type: text/html CRLF
CRLF

• where datasize denotes the size of the data that follows

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 31

3.10 Code For A Web Application (4)

• The code is also complicated by error handling
– error messages must be sent in a form that a browser can

understand

• If a request is incorrectly formed, our server generates a
400 error message

• If the item specified in the request cannot be found
404 error message

• The Web server differs from the previous examples in a
significant way:
– the server program does not exit after satisfying one request
– Instead, it remains running, ready for additional requests

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 32

3.11 Managing Multiple Connections
With The Select Function (1)

• Although our example API supports 1-to-1 interaction
between a client and server,
– the API does not support 1-to-many interaction

• To see why, consider multiple connections
– To create such connections

• a single application must call make_contact multiple times
• specifying a computer and appnum for each call

• Once the connections have been established
– the application cannot know which of them will receive a

message first

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 33

3.11 Managing Multiple Connections
With The Select Function (2)

• Many OS include a function named select that solves the
problem of managing multiple connections
– The select call checks a set of connections
– The call blocks until at least one of the specified connections has

received data
– The call then returns a value that tells which of the connections

have received data

© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 34

3.11 Managing Multiple Connections
With The Select Function (3)

• Ex: consider an application that must receive requests and send
responses over two connections
– Such an application can have the following general form:

Call make_contact to form connection1;
Call make_contact to form connection2;

Repeat forever {
Call select to determine which connection is ready
If (connection1 is ready) {

Call recv to read request from connection1;
Compute response to request;
Call send to send response over connection1;

} if (connection2 is ready) {
Call recv to read request from connection2;
Compute response to request;
Call send to send response over connection2; } }

